Nature

date
May 30, 2023
slug
nature
status
Published
tags
Journals
summary
Table of Contents and Abstracts
type
Post
ID
81
⭐ Interesting paper
🔺 Important paper
🇨🇳 China study
 
I pick out studies related to climate change, biology, and geography.

2023

Global evidence of rapid urban growth in flood zones since 1985
Disaster losses are increasing and evidence is mounting that climate change is driving up the probability of extreme natural shocks. Yet it has also proved politically expedient to invoke climate change as an exogenous force that supposedly places disasters beyond the influence of local and national authorities. However, locally determined patterns of urbanization and spatial development are key factors to the exposure and vulnerability of people to climatic shocks6. Using high-resolution annual data, this study shows that, since 1985, human settlements around the world—from villages to megacities—have expanded continuously and rapidly into present-day flood zones. In many regions, growth in the most hazardous flood zones is outpacing growth in non-exposed zones by a large margin, particularly in East Asia, where high-hazard settlements have expanded 60% faster than flood-safe settlements. These results provide systematic evidence of a divergence in the exposure of countries to flood hazards. Instead of adapting their exposure, many countries continue to actively amplify their exposure to increasingly frequent climatic shocks.
Seasonal advance of intense tropical cyclones in a warming climate
Intense tropical cyclones (TCs), which often peak in autumn1,2, have destructive impacts on life and property, making it crucial to determine whether any changes in intense TCs are likely to occur. Here, we identify a significant seasonal advance of intense TCs since the 1980s in most tropical oceans, with earlier-shifting rates of 3.7 and 3.2 days per decade for the Northern and Southern Hemispheres, respectively. This seasonal advance of intense TCs is closely related to the seasonal advance of rapid intensification events, favoured by the observed earlier onset of favourable oceanic conditions. Using simulations from multiple global climate models, large ensembles and individual forcing experiments, the earlier onset of favourable oceanic conditions is detectable and primarily driven by greenhouse gas forcing. The seasonal advance of intense TCs will increase the likelihood of intersecting with other extreme rainfall events, which usually peak in summer, thereby leading to disproportionate impacts.
The geography of climate and the global patterns of species diversity
Climate’s effect on global biodiversity is typically viewed through the lens of temperature, humidity and resulting ecosystem productivity. However, it is not known whether biodiversity depends solely on these climate conditions, or whether the size and fragmentation of these climates are also crucial. Here we shift the common perspective in global biodiversity studies, transitioning from geographic space to a climate-defined multidimensional space. Our findings suggest that larger and more isolated climate conditions tend to harbour higher diversity and species turnover among terrestrial tetrapods, encompassing more than 30,000 species. By considering both the characteristics of climate itself and its geographic attributes, we can explain almost 90% of the variation in global species richness. Half of the explanatory power (45%) may be attributed either to climate itself or to the geography of climate, suggesting a nuanced interplay between them. Our work evolves the conventional idea that larger climate regions, such as the tropics, host more species primarily because of their size. Instead, we underscore the integral roles of both the geographic extent and degree of isolation of climates. This refined understanding presents a more intricate picture of biodiversity distribution, which can guide our approach to biodiversity conservation in an ever-changing world.
Dopaminergic error signals retune to social feedback during courtship
Hunger, thirst, loneliness and ambition determine the reward value of food, water, social interaction and performance outcome1. Dopamine neurons respond to rewards meeting these diverse needs, but it remains unclear how behaviour and dopamine signals change as priorities change with new opportunities in the environment. One possibility is that dopamine signals for distinct drives are routed to distinct dopamine pathways. Another possibility is that dopamine signals in a given pathway are dynamically tuned to rewards set by the current priority. Here we used electrophysiology and fibre photometry to test how dopamine signals associated with quenching thirst, singing a good song and courting a mate change as male zebra finches (Taeniopygia guttata) were provided with opportunities to retrieve water, evaluate song performance or court a female. When alone, water reward signals were observed in two mesostriatal pathways but singing-related performance error signals were routed to Area X, a striatal nucleus specialized for singing. When courting a female, water seeking was reduced and dopamine responses to both water and song performance outcomes diminished. Instead, dopamine signals in Area X were driven by female calls timed with the courtship song. Thus the dopamine system handled coexisting drives by routing vocal performance and social feedback signals to a striatal area for communication and by flexibly re-tuning to rewards set by the prioritized drive.
The contribution of wildfire to PM2.5 trends in the USA
Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1,2,3,4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 μm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.
Global population exposure to landscape fire air pollution from 2000 to 2019
Wildfires are thought to be increasing in severity and frequency as a result of climate change. Air pollution from landscape fires can negatively affect human health, but human exposure to landscape fire-sourced (LFS) air pollution has not been well characterized at the global scale. Here, we estimate global daily LFS outdoor fine particulate matter (PM2.5) and surface ozone concentrations at 0.25° × 0.25° resolution during the period 2000–2019 with the help of machine learning and chemical transport models. We found that overall population-weighted average LFS PM2.5 and ozone concentrations were 2.5 µg m−3 (6.1% of all-source PM2.5) and 3.2 µg m−3 (3.6% of all-source ozone), respectively, in 2010–2019, with a slight increase for PM2.5, but not for ozone, compared with 2000–2009. Central Africa, Southeast Asia, South America and Siberia experienced the highest LFS PM2.5 and ozone concentrations. The concentrations of LFS PM2.5 and ozone were about four times higher in low-income countries than in high-income countries. During the period 2010–2019, 2.18 billion people were exposed to at least 1 day of substantial LFS air pollution per year, with each person in the world having, on average, 9.9 days of exposure per year. These two metrics increased by 6.8% and 2.1%, respectively, compared with 2000–2009. Overall, we find that the global population is increasingly exposed to LFS air pollution, with socioeconomic disparities.
Tropical Atlantic multidecadal variability is dominated by external forcing
The tropical Atlantic climate is characterized by prominent and correlated multidecadal variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane activity. Owing to uncertainties in both the models and the observations, the origin of the physical relationships among these systems has remained controversial. Here we show that the cross-equatorial gradient in tropical Atlantic SSTs—largely driven by radiative perturbations associated with anthropogenic emissions and volcanic aerosols since 19503,7—is a key determinant of Atlantic hurricane formation and Sahel rainfall. The relationship is obscured in a large ensemble of CMIP6 Earth system models, because the models overestimate long-term trends for warming in the Northern Hemisphere relative to the Southern Hemisphere from around 1950 as well as associated changes in atmospheric circulation and rainfall. When the overestimated trends are removed, correlations between SSTs and Atlantic hurricane formation and Sahel rainfall emerge as a response to radiative forcing, especially since 1950 when anthropogenic aerosol forcing has been high. Our findings establish that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts than SSTs across the entire North Atlantic, because the gradient is more physically connected to tropical impacts via local atmospheric circulations. Our findings highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted from radiative forcing driven by anthropogenic emissions and volcanism, but firmer predictions are limited by the signal-to-noise paradox and uncertainty in future climate forcings.
Identifying attacks in the Russia–Ukraine conflict using seismic array data
Seismometers are generally used by the research community to study local or distant earthquakes, but seismograms also contain critical observations from regional and global explosions, which can be used to better understand conflicts and identify potential breaches of international law. Although seismic, infrasound and hydroacoustic technology is used by the International Monitoring System to monitor nuclear explosions as part of the Comprehensive Nuclear-Test-Ban Treaty, the detection and location of lower-yield military attacks requires a network of sensors much closer to the source of the explosions. Obtaining comprehensive and objective data that can be used to effectively monitor an active conflict zone therefore remains a substantial challenge. Here we show how seismic waves generated by explosions in northern Ukraine and recorded by a local network of seismometers can be used to automatically identify individual attacks in close to real time, providing an unprecedented view of an active conflict zone. Between February and November 2022, we observed more than 1,200 explosions from the Kyiv, Zhytomyr and Chernihiv provinces, providing accurate origin times, locations and magnitudes. We identify a range of seismoacoustic signals associated with various types of military attack, with the resulting catalogue of explosions far exceeding the number of publicly reported attacks. Our results demonstrate that seismic data can be an effective tool for objective monitoring of a continuing conflict, providing invaluable information about potential breaches of international law.
Forced changes in the Pacific Walker circulation over the past millennium
The Pacific Walker circulation (PWC) has an outsized influence on weather and climate worldwide. Yet the PWC response to external forcings is unclear1,2, with empirical data and model simulations often disagreeing on the magnitude and sign of these responses3. Most climate models predict that the PWC will ultimately weaken in response to global warming4. However, the PWC strengthened from 1992 to 2011, suggesting a significant role for anthropogenic and/or volcanic aerosol forcing5, or internal variability. Here we use a new annually resolved, multi-method, palaeoproxy-derived PWC reconstruction ensemble (1200–2000) to show that the 1992–2011 PWC strengthening is anomalous but not unprecedented in the context of the past 800 years. The 1992–2011 PWC strengthening was unlikely to have been a consequence of volcanic forcing and may therefore have resulted from anthropogenic aerosol forcing or natural variability. We find no significant industrial-era (1850–2000) PWC trend, contrasting the PWC weakening simulated by most climate models3. However, an industrial-era shift to lower-frequency variability suggests a subtle anthropogenic influence. The reconstruction also suggests that volcanic eruptions trigger El Niño-like PWC weakening, similar to the response simulated by climate models.
Native diversity buffers against severity of non-native tree invasions
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Like-minded sources on Facebook are prevalent but not polarizing
Many critics raise concerns about the prevalence of ‘echo chambers’ on social media and their potential role in increasing political polarization. However, the lack of available data and the challenges of conducting large-scale field experiments have made it difficult to assess the scope of the problem1,2. Here we present data from 2020 for the entire population of active adult Facebook users in the USA showing that content from ‘like-minded’ sources constitutes the majority of what people see on the platform, although political information and news represent only a small fraction of these exposures. To evaluate a potential response to concerns about the effects of echo chambers, we conducted a multi-wave field experiment on Facebook among 23,377 users for whom we reduced exposure to content from like-minded sources during the 2020 US presidential election by about one-third. We found that the intervention increased their exposure to content from cross-cutting sources and decreased exposure to uncivil language, but had no measurable effects on eight preregistered attitudinal measures such as affective polarization, ideological extremity, candidate evaluations and belief in false claims. These precisely estimated results suggest that although exposure to content from like-minded sources on social media is common, reducing its prevalence during the 2020 US presidential election did not correspondingly reduce polarization in beliefs or attitudes.
Increased occurrences of consecutive La Niña events under global warming
Most El Niño events occur sporadically and peak in a single winter, whereas La Niña tends to develop after an El Niño and last for two years or longer. Relative to single-year La Niña, consecutive La Niña features meridionally broader easterly winds and hence a slower heat recharge of the equatorial Pacific6,7, enabling the cold anomalies to persist, exerting prolonged impacts on global climate, ecosystems and agriculture. Future changes to multi-year-long La Niña events remain unknown. Here, using climate models under future greenhouse-gas forcings14, we find an increased frequency of consecutive La Niña ranging from 19 ± 11% in a low-emission scenario to 33 ± 13% in a high-emission scenario, supported by an inter-model consensus stronger in higher-emission scenarios. Under greenhouse warming, a mean-state warming maximum in the subtropical northeastern Pacific enhances the regional thermodynamic response to perturbations, generating anomalous easterlies that are further northward than in the twentieth century in response to El Niño warm anomalies. The sensitivity of the northward-broadened anomaly pattern is further increased by a warming maximum in the equatorial eastern Pacific. The slower heat recharge associated with the northward-broadened easterly anomalies facilitates the cold anomalies of the first-year La Niña to persist into a second-year La Niña. Thus, climate extremes as seen during historical consecutive La Niña episodes probably occur more frequently in the twenty-first century.
The global wildland–urban interface
The wildland–urban interface (WUI) is where buildings and wildland vegetation meet or intermingle. It is where human–environmental conflicts and risks can be concentrated, including the loss of houses and lives to wildfire, habitat loss and fragmentation and the spread of zoonotic diseases. However, a global analysis of the WUI has been lacking. Here, we present a global map of the 2020 WUI at 10 m resolution using a globally consistent and validated approach based on remote sensing-derived datasets of building area and wildland vegetation. We show that the WUI is a global phenomenon, identify many previously undocumented WUI hotspots and highlight the wide range of population density, land cover types and biomass levels in different parts of the global WUI. The WUI covers only 4.7% of the land surface but is home to nearly half its population (3.5 billion). The WUI is especially widespread in Europe (15% of the land area) and the temperate broadleaf and mixed forests biome (18%). Of all people living near 2003–2020 wildfires (0.4 billion), two thirds have their home in the WUI, most of them in Africa (150 million). Given that wildfire activity is predicted to increase because of climate change in many regions, there is a need to understand housing growth and vegetation patterns as drivers of WUI change.
Europeans’ support for refugees of varying background is stable over time
Protracted global conflicts during the past decade have led to repeated major humanitarian protection crises in Europe. During the height of the Syrian refugee crisis at the end of 2015, Europe hosted around 2.3 million people requesting asylum. Today, the ongoing war in Ukraine has resulted in one of the largest humanitarian emergencies in Europe since World War II, with more than eight million Ukrainians seeking refuge across Europe. Here we explore whether repeated humanitarian crises threaten to exhaust solidarity and whether Europeans welcome Ukrainian asylum seekers over other asylum seekers. We conducted repeat conjoint experiments during the 2015–2016 and 2022 refugee crises, asking 33,000 citizens in 15 European countries to evaluate randomly varied profiles of asylum seekers. We find that public preferences for asylum seekers with specific attributes have remained remarkably stable and general support has, if anything, increased slightly over time. Ukrainian asylum seekers were welcomed in 2022, with their demographic, religious and displacement profile having a larger role than their nationality. Yet, this welcome did not come at the expense of support for other marginalized refugee groups, such as Muslim refugees. These findings have implications for our theoretical understanding of the drivers and resilience of public attitudes towards refugees and for policymakers tasked to find effective responses to the enduring stress on the asylum system.
🔺The social value of offsets
It is unclear how much carbon should be stored in temporary and risky offsets to compensate one ton of CO2 emissions. Here we cast the social value of an offset (SVO), measured in terms of economic damages avoided, as a well-defined fraction of the social cost of carbon reflecting offset duration, and risks of non-additionality and failure. The SVO reflects the value of temporary storage, and overcomes shortcomings in the climate science and economics of previous contributions. The SVO is policy relevant. An efficient net-zero policy will consist of offsets if their SVO/cost ratio exceeds the benefit/cost ratio of alternatives. The SVO yields an indicator of the equivalence of offsets to permanent carbon storage measured by the ratio of the SVO to the social cost of carbon. We provide a matrix of equivalence factors for different risks, permanence and climate scenarios. Estimation yields a rule of thumb: one offset sequestering one ton for 50 years is equivalent to between 0.33 and 0.5 tons permanently locked away. Equivalence offers a means of replacing perpetual offset contracts by simpler, easy to monitor short-term contracts, has applications to carbon life cycle analysis and the valuation of carbon debts6, and can be the basis of comparing offsets of different qualities in the voluntary and compliance markets.
⭐🔺The illusion of moral decline
Anecdotal evidence indicates that people believe that morality is declining. In a series of studies using both archival and original data (n = 12,492,983), we show that people in at least 60 nations around the world believe that morality is declining, that they have believed this for at least 70 years and that they attribute this decline both to the decreasing morality of individuals as they age and to the decreasing morality of successive generations. Next, we show that people’s reports of the morality of their contemporaries have not declined over time, suggesting that the perception of moral decline is an illusion. Finally, we show how a simple mechanism based on two well-established psychological phenomena (biased exposure to information and biased memory for information) can produce an illusion of moral decline, and we report studies that confirm two of its predictions about the circumstances under which the perception of moral decline is attenuated, eliminated or reversed (that is, when respondents are asked about the morality of people they know well or people who lived before the respondent was born). Together, our studies show that the perception of moral decline is pervasive, perdurable, unfounded and easily produced. This illusion has implications for research on the misallocation of scarce resources, the underuse of social support and social influence.
轶事证据表明,人们相信道德在下降。在一系列使用档案数据和原始数据(n = 12,492,983)进行的研究中,我们表明,全世界至少有 60 个国家的人们相信道德在下降,而且至少 70 年来一直如此,他们将这种下降归因于个人道德随着年龄的增长而下降,也归因于连续几代人道德的下降。接下来,我们展示了人们对同时代人道德水平的报告并没有随着时间的推移而下降,这表明道德水平下降的看法只是一种错觉。最后,我们展示了一种基于两种已被证实的心理现象(对信息的偏差接触和对信息的偏差记忆)的简单机制是如何产生道德滑坡幻觉的,我们还报告了一些研究,证实了其中的两个预测,即在什么情况下道德滑坡感会减弱、消除或逆转(即当被调查者被问及他们熟悉的人或在被调查者出生前生活的人的道德时)。总之,我们的研究表明,道德滑坡感是普遍的、持久的、毫无根据的,而且很容易产生。这种错觉对稀缺资源分配不当、社会支持和社会影响利用不足等问题的研究具有启示意义。
🔺Expertise increases planning depth in human gameplay
A hallmark of human intelligence is the ability to plan multiple steps into the future. Despite decades of research, it is still debated whether skilled decision-makers plan more steps ahead than novices. Traditionally, the study of expertise in planning has used board games such as chess, but the complexity of these games poses a barrier to quantitative estimates of planning depth. Conversely, common planning tasks in cognitive science often have a lower complexity and impose a ceiling for the depth to which any player can plan. Here we investigate expertise in a complex board game that offers ample opportunity for skilled players to plan deeply. We use model fitting methods to show that human behaviour can be captured using a computational cognitive model based on heuristic search. To validate this model, we predict human choices, response times and eye movements. We also perform a Turing test and a reconstruction experiment. Using the model, we find robust evidence for increased planning depth with expertise in both laboratory and large-scale mobile data. Experts memorize and reconstruct board features more accurately. Using complex tasks combined with precise behavioural modelling might expand our understanding of human planning and help to bridge the gap with progress in artificial intelligence.
Religion and educational mobility in Africa
The African people and leaders have long seen education as a driving force of development and liberation, a view shared by international institutions, as schooling has large economic and non-economic returns, particularly in low-income settings. In this study, we examine the educational progress across faiths throughout postcolonial Africa, home to some of the world’s largest Christian and Muslim communities. We construct comprehensive religion-specific measures of intergenerational mobility in education using census data from 2,286 districts in 21 countries and document the following. First, Christians have better mobility outcomes than Traditionalists and Muslims. Second, differences in intergenerational mobility between Christians and Muslims persist among those residing in the same district, in households with comparable economic and family backgrounds. Third, although Muslims benefit as much as Christians when they move early in life to high-mobility regions, they are less likely to do so. Their low internal mobility accentuates the educational deficit, as Muslims reside on average in areas that are less urbanized and more remote with limited infrastructure. Fourth, the Christian–Muslim gap is most prominent in areas with large Muslim communities, where the latter also register the lowest emigration rates. As African governments and international organizations invest heavily in educational programmes, our findings highlight the need to understand better the private and social returns to schooling across faiths in religiously segregated communities and to carefully think about religious inequalities in the take-up of educational policies.
Increased heat risk in wet climate induced by urban humid heat
Cities are generally warmer than their adjacent rural land, a phenomenon known as the urban heat island (UHI). Often accompanying the UHI effect is another phenomenon called the urban dry island (UDI), whereby the humidity of urban land is lower than that of the surrounding rural land. The UHI exacerbates heat stress on urban residents, whereas the UDI may instead provide relief because the human body can cope with hot conditions better at lower humidity through perspiration. The relative balance between the UHI and the UDI—as measured by changes in the wet-bulb temperature (Tw)—is a key yet largely unknown determinant of human heat stress in urban climates. Here we show that Tw is reduced in cities in dry and moderately wet climates, where the UDI more than offsets the UHI, but increased in wet climates (summer precipitation of more than 570 millimetres). Our results arise from analysis of urban and rural weather station data across the world and calculations with an urban climate model. In wet climates, the urban daytime Tw is 0.17 ± 0.14 degrees Celsius (mean ± 1 standard deviation) higher than rural Tw in the summer, primarily because of a weaker dynamic mixing in urban air. This Tw increment is small, but because of the high background Tw in wet climates, it is enough to cause two to six extra dangerous heat-stress days per summer for urban residents under current climate conditions. The risk of extreme humid heat is projected to increase in the future, and these urban effects may further amplify the risk.
COVID-19 amplified racial disparities in the US criminal legal system
The criminal legal system in the USA drives an incarceration rate that is the highest on the planet, with disparities by class and race among its signature features. During the first year of the coronavirus disease 2019 (COVID-19) pandemic, the number of incarcerated people in the USA decreased by at least 17%—the largest, fastest reduction in prison population in American history. Here we ask how this reduction influenced the racial composition of US prisons and consider possible mechanisms for these dynamics. Using an original dataset curated from public sources on prison demographics across all 50 states and the District of Columbia, we show that incarcerated white people benefited disproportionately from the decrease in the US prison population and that the fraction of incarcerated Black and Latino people sharply increased. This pattern of increased racial disparity exists across prison systems in nearly every state and reverses a decade-long trend before 2020 and the onset of COVID-19, when the proportion of incarcerated white people was increasing amid declining numbers of incarcerated Black people. Although a variety of factors underlie these trends, we find that racial inequities in average sentence length are a major contributor. Ultimately, this study reveals how disruptions caused by COVID-19 exacerbated racial inequalities in the criminal legal system, and highlights key forces that sustain mass incarceration. To advance opportunities for data-driven social science, we publicly released the data associated with this study at Zenodo.
🇨🇳Ageing threatens sustainability of smallholder farming in China
Rapid demographic ageing substantially affects socioeconomic development and presents considerable challenges for food security and agricultural sustainability, which have so far not been well understood. Here, by using data from more than 15,000 rural households with crops but no livestock across China, we show that rural population ageing reduced farm size by 4% through transferring cropland ownership and land abandonment (approximately 4 million hectares) in 2019, taking the population age structure in 1990 as a benchmark. These changes led to a reduction of agricultural inputs, including chemical fertilizers, manure and machinery, which decreased agricultural output and labour productivity by 5% and 4%, respectively, further lowering farmers’ income by 15%. Meanwhile, fertilizer loss increased by 3%, resulting in higher pollutant emissions to the environment. In new farming models, such as cooperative farming, farms tend to be larger and operated by younger farmers, who have a higher average education level, hence improving agricultural management. By encouraging the transition to new farming models, the negative consequences of ageing can be reversed. Agricultural input, farm size and farmer’s income would grow by approximately 14%, 20% and 26%, respectively, and fertilizer loss would reduce by 4% in 2100 compared with that in 2020. This suggests that management of rural ageing will contribute to a comprehensive transformation of smallholder farming to sustainable agriculture in China.
Extensive global wetland loss over the past three centuries
Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9–3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16–23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration.
Financial incentives for vaccination do not have negative unintended consequences
Financial incentives to encourage healthy and prosocial behaviours often trigger initial behavioural change, but a large academic literature warns against using them. Critics warn that financial incentives can crowd out prosocial motivations and reduce perceived safety and trust, thereby reducing healthy behaviours when no payments are offered and eroding morals more generally. Here we report findings from a large-scale, pre-registered study in Sweden that causally measures the unintended consequences of offering financial incentives for taking the first dose of a COVID-19 vaccine. We use a unique combination of random exposure to financial incentives, population-wide administrative vaccination records and rich survey data. We find no negative consequences of financial incentives; we can reject even small negative impacts of offering financial incentives on future vaccination uptake, morals, trust and perceived safety. In a complementary study, we find that informing US residents about the existence of state incentive programmes also has no negative consequences. Our findings inform not only the academic debate on financial incentives for behaviour change but also policy-makers who consider using financial incentives to change behaviour.
Papers and patents are becoming less disruptive over time
Theories of scientific and technological change view discovery and invention as endogenous processes, wherein previous accumulated knowledge enables future progress by allowing researchers to, in Newton’s words, ‘stand on the shoulders of giants. Recent decades have witnessed exponential growth in the volume of new scientific and technological knowledge, thereby creating conditions that should be ripe for major advances. Yet contrary to this view, studies suggest that progress is slowing in several major fields. Here, we analyse these claims at scale across six decades, using data on 45 million papers and 3.9 million patents from six large-scale datasets, together with a new quantitative metric—the CD index—that characterizes how papers and patents change networks of citations in science and technology. We find that papers and patents are increasingly less likely to break with the past in ways that push science and technology in new directions. This pattern holds universally across fields and is robust across multiple different citation- and text-based metrics1,. Subsequently, we link this decline in disruptiveness to a narrowing in the use of previous knowledge, allowing us to reconcile the patterns we observe with the ‘shoulders of giants’ view. We find that the observed declines are unlikely to be driven by changes in the quality of published science, citation practices or field-specific factors. Overall, our results suggest that slowing rates of disruption may reflect a fundamental shift in the nature of science and technology.

2022

Wetland emission and atmospheric sink changes explain methane growth in 2020
Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr−1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr−1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr−1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr−1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr−1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge.
Logged tropical forests have amplified and diverse ecosystem energetics
Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
⭐ 🔺Discriminatory attitudes against unvaccinated people during the pandemic
During the COVID-19 pandemic, sizeable groups of unvaccinated people persist even in countries with high vaccine access. As a consequence, vaccination became a controversial subject of debate and even protest. Here we assess whether people express discriminatory attitudes in the form of negative affectivity, stereotypes and exclusionary attitudes in family and political settings across groups defined by COVID-19 vaccination status. We quantify discriminatory attitudes between vaccinated and unvaccinated citizens in 21 countries, covering a diverse set of cultures across the world. Across three conjoined experimental studies (n = 15,233), we demonstrate that vaccinated people express discriminatory attitudes towards unvaccinated individuals at a level as high as discriminatory attitudes that are commonly aimed at immigrant and minority populations. By contrast, there is an absence of evidence that unvaccinated individuals display discriminatory attitudes towards vaccinated people, except for the presence of negative affectivity in Germany and the USA. We find evidence in support of discriminatory attitudes against unvaccinated individuals in all countries except for Hungary and Romania, and find that discriminatory attitudes are more strongly expressed in cultures with stronger cooperative norms. Previous research on the psychology of cooperation has shown that individuals react negatively against perceived ‘free-riders’, including in the domain of vaccinations8,9. Consistent with this, we find that contributors to the public good of epidemic control (that is, vaccinated individuals) react with discriminatory attitudes towards perceived free-riders (that is, unvaccinated individuals). National leaders and vaccinated members of the public appealed to moral obligations to increase COVID-19 vaccine uptake, but our findings suggest that discriminatory attitudes—including support for the removal of fundamental rights—simultaneously emerged.
🔺Using machine learning to assess the livelihood impact of electricity access
In many regions of the world, sparse data on key economic outcomes inhibit the development, targeting and evaluation of public policy. We demonstrate how advancements in satellite imagery and machine learning (ML) can help ameliorate these data and inference challenges. In the context of an expansion of the electrical grid across Uganda, we show how a combination of satellite imagery and computer vision can be used to develop local-level livelihood measurements appropriate for inferring the causal impact of electricity access on livelihoods. We then show how ML-based inference techniques deliver more reliable estimates of the causal impact of electrification than traditional alternatives when applied to these data. We estimate that grid access improves village-level asset wealth in rural Uganda by up to 0.15 standard deviations, more than doubling the growth rate during our study period relative to untreated areas. Our results provide country-scale evidence on the impact of grid-based infrastructure investment and our methods provide a low-cost, generalizable approach to future policy evaluation in data-sparse environments.
Small rainfall changes drive substantial changes in plant coexistence
Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.
Quantifying hierarchy and dynamics in US faculty hiring and retention
Faculty hiring and retention determine the composition of the US academic workforce and directly shape educational outcomes, careers, the development and spread of ideas and research priorities. However, hiring and retention are dynamic, reflecting societal and academic priorities, generational turnover and efforts to diversify the professoriate along gender, racial and socioeconomic lines. A comprehensive study of the structure and dynamics of the US professoriate would elucidate the effects of these efforts and the processes that shape scholarship more broadly. Here we analyse the academic employment and doctoral education of tenure-track faculty at all PhD-granting US universities over the decade 2011–2020, quantifying stark inequalities in faculty production, prestige, retention and gender. Our analyses show universal inequalities in which a small minority of universities supply a large majority of faculty across fields, exacerbated by patterns of attrition and reflecting steep hierarchies of prestige. We identify markedly higher attrition rates among faculty trained outside the United States or employed by their doctoral university. Our results indicate that gains in women’s representation over this decade result from demographic turnover and earlier changes made to hiring, and are unlikely to lead to long-term gender parity in most fields. These analyses quantify the dynamics of US faculty hiring and retention, and will support efforts to improve the organization, composition and scholarship of the US academic workforce.
🔺Comprehensive evidence implies a higher social cost of CO2
The social cost of carbon dioxide (SC-CO2) measures the monetized value of the damages to society caused by an incremental metric tonne of CO2 emissions and is a key metric informing climate policy. Used by governments and other decision-makers in benefit–cost analysis for over a decade, SC-CO2 estimates draw on climate science, economics, demography and other disciplines. However, a 2017 report by the US National Academies of Sciences, Engineering, and Medicine1 (NASEM) highlighted that current SC-CO2 estimates no longer reflect the latest research. The report provided a series of recommendations for improving the scientific basis, transparency and uncertainty characterization of SC-CO2 estimates. Here we show that improved probabilistic socioeconomic projections, climate models, damage functions, and discounting methods that collectively reflect theoretically consistent valuation of risk, substantially increase estimates of the SC-CO2. Our preferred mean SC-CO2 estimate is $185 per tonne of CO2 ($44–$413 per tCO2: 5%–95% range, 2020 US dollars) at a near-term risk-free discount rate of 2%, a value 3.6 times higher than the US government’s current value of $51 per tCO2. Our estimates incorporate updated scientific understanding throughout all components of SC-CO2 estimation in the new open-source Greenhouse Gas Impact Value Estimator (GIVE) model, in a manner fully responsive to the near-term NASEM recommendations. Our higher SC-CO2 values, compared with estimates currently used in policy evaluation, substantially increase the estimated benefits of greenhouse gas mitigation and thereby increase the expected net benefits of more stringent climate policies.
The challenge of unprecedented floods and droughts in risk management
Risk management has reduced vulnerability to floods and droughts globally, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change.
Dairying, diseases and the evolution of lactase persistence in Europe
In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation—proxies for these drivers—provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.
Women are credited less in science than men
There is a well-documented gap between the observed number of works produced by women and by men in science, with clear consequences for the retention and promotion of women. The gap might be a result of productivity differences, or it might be owing to women’s contributions not being acknowledged. Here we find that at least part of this gap is the result of unacknowledged contributions: women in research teams are significantly less likely than men to be credited with authorship. The findings are consistent across three very different sources of data. Analysis of the first source—large-scale administrative data on research teams, team scientific output and attribution of credit—show that women are significantly less likely to be named on a given article or patent produced by their team relative to their male peers. The gender gap in attribution is present across most scientific fields and almost all career stages. The second source—an extensive survey of authors—similarly shows that women’s scientific contributions are systematically less likely to be recognized. The third source—qualitative responses—suggests that the reason that women are less likely to be credited is because their work is often not known, is not appreciated or is ignored. At least some of the observed gender gap in scientific output may be owing not to differences in scientific contribution, but rather to differences in attribution.
People construct simplified mental representations to plan
One of the most striking features of human cognition is the ability to plan. Two aspects of human planning stand out—its efficiency and flexibility. Efficiency is especially impressive because plans must often be made in complex environments, and yet people successfully plan solutions to many everyday problems despite having limited cognitive resources. Standard accounts in psychology, economics and artificial intelligence have suggested that human planning succeeds because people have a complete representation of a task and then use heuristics to plan future actions in that representation. However, this approach generally assumes that task representations are fixed. Here we propose that task representations can be controlled and that such control provides opportunities to quickly simplify problems and more easily reason about them. We propose a computational account of this simplification process and, in a series of preregistered behavioural experiments, show that it is subject to online cognitive control12,13,14 and that people optimally balance the complexity of a task representation and its utility for planning and acting. These results demonstrate how strategically perceiving and conceiving problems facilitates the effective use of limited cognitive resources.
Tackling psychosocial and capital constraints to alleviate poverty
Many policies attempt to help extremely poor households build sustainable sources of income. Although economic interventions have predominated historically1,2, psychosocial support has attracted substantial interest3,4,5, particularly for its potential cost-effectiveness. Recent evidence has shown that multi-faceted ‘graduation’ programmes can succeed in generating sustained changes6,7. Here we show that a multi-faceted intervention can open pathways out of extreme poverty by relaxing capital and psychosocial constraints. We conducted a four-arm randomized evaluation among extremely poor female beneficiaries already enrolled in a national cash transfer government programme in Niger. The three treatment arms included group savings promotion, coaching and entrepreneurship training, and then added either a lump-sum cash grant, psychosocial interventions, or both the cash grant and psychosocial interventions. All three arms generated positive effects on economic outcomes and psychosocial well-being, but there were notable differences in the pathways and the timing of effects. Overall, the arms with psychosocial interventions were the most cost-effective, highlighting the value of including well-designed psychosocial components in government-led multi-faceted interventions for the extreme poor.
Virtual communication curbs creative idea generation
COVID-19 accelerated a decade-long shift to remote work by normalizing working from home on a large scale. Indeed, 75% of US employees in a 2021 survey reported a personal preference for working remotely at least one day per week1, and studies estimate that 20% of US workdays will take place at home after the pandemic ends. Here we examine how this shift away from in-person interaction affects innovation, which relies on collaborative idea generation as the foundation of commercial and scientific progress. In a laboratory study and a field experiment across five countries (in Europe, the Middle East and South Asia), we show that videoconferencing inhibits the production of creative ideas. By contrast, when it comes to selecting which idea to pursue, we find no evidence that videoconferencing groups are less effective (and preliminary evidence that they may be more effective) than in-person groups. Departing from previous theories that focus on how oral and written technologies limit the synchronicity and extent of information exchanged, we find that our effects are driven by differences in the physical nature of videoconferencing and in-person interactions. Specifically, using eye-gaze and recall measures, as well as latent semantic analysis, we demonstrate that videoconferencing hampers idea generation because it focuses communicators on a screen, which prompts a narrower cognitive focus. Our results suggest that virtual interaction comes with a cognitive cost for creative idea generation.
Realization of Paris Agreement pledges may limit warming just below 2 °C
Over the last five years prior to the Glasgow Climate Pact, 154 Parties have submitted new or updated 2030 mitigation goals in their nationally determined contributions and 76 have put forward longer-term pledges. Quantifications of the pledges before the 2021 United Nations Climate Change Conference (COP26) suggested a less than 50 per cent chance of keeping warming below 2 degrees Celsius. Here we show that warming can be kept just below 2 degrees Celsius if all conditional and unconditional pledges are implemented in full and on time. Peak warming could be limited to 1.9–2.0 degrees Celsius (5%–95% range 1.4–2.8 °C) in the full implementation case—building on a probabilistic characterization of Earth system uncertainties in line with the Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). We retrospectively project twenty-first-century warming to show how the aggregate level of ambition changed from 2015 to 2021. Our results rely on the extrapolation of time-limited targets beyond 2030 or 2050, characteristics of the IPCC 1.5 °C Special Report (SR1.5) scenario database and the full implementation of pledges. More pessimistic assumptions on these factors would lead to higher temperature projections. A second, independent emissions modelling framework projected peak warming of 1.8 degrees Celsius, supporting the finding that realized pledges could limit warming to just below 2 degrees Celsius. Limiting warming not only to ‘just below’ but to ‘well below’ 2 degrees Celsius or 1.5 degrees Celsius urgently requires policies and actions to bring about steep emission reductions this decade, aligned with mid-century global net-zero CO2 emissions.
Climate effects on archaic human habitats and species successions
It has long been believed that climate shifts during the last 2 million years had a pivotal role in the evolution of our genus Homo. However, given the limited number of representative palaeo-climate datasets from regions of anthropological interest, it has remained challenging to quantify this linkage. Here, we use an unprecedented transient Pleistocene coupled general circulation model simulation in combination with an extensive compilation of fossil and archaeological records to study the spatiotemporal habitat suitability for five hominin species over the past 2 million years. We show that astronomically forced changes in temperature, rainfall and terrestrial net primary production had a major impact on the observed distributions of these species. During the Early Pleistocene, hominins settled primarily in environments with weak orbital-scale climate variability. This behaviour changed substantially after the mid-Pleistocene transition, when archaic humans became global wanderers who adapted to a wide range of spatial climatic gradients. Analysis of the simulated hominin habitat overlap from approximately 300–400 thousand years ago further suggests that antiphased climate disruptions in southern Africa and Eurasia contributed to the evolutionary transformation of Homo heidelbergensis populations into Homo sapiens and Neanderthals, respectively. Our robust numerical simulations of climate-induced habitat changes provide a framework to test hypotheses on our human origin.
Warming weakens the night-time barrier to global fire
Night-time provides a critical window for slowing or extinguishing fires owing to the lower temperature and the lower vapour pressure deficit (VPD). However, fire danger is most often assessed based on daytime conditions, capturing what promotes fire spread rather than what impedes fire. Although it is well appreciated that changing daytime weather conditions are exacerbating fire, potential changes in night-time conditions—and their associated role as fire reducers—are less understood. Here we show that night-time fire intensity has increased, which is linked to hotter and drier nights. Our findings are based on global satellite observations of daytime and night-time fire detections and corresponding hourly climate data, from which we determine landcover-specific thresholds of VPD (VPDt), below which fire detections are very rare (less than 95 per cent modelled chance). Globally, daily minimum VPD increased by 25 per cent from 1979 to 2020. Across burnable lands, the annual number of flammable night-time hours—when VPD exceeds VPDt—increased by 110 hours, allowing five additional nights when flammability never ceases. Across nearly one-fifth of burnable lands, flammable nights increased by at least one week across this period. Globally, night fires have become 7.2 per cent more intense from 2003 to 2020, measured via a satellite record. These results reinforce the lack of night-time relief that wildfire suppression teams have experienced in recent years. We expect that continued night-time warming owing to anthropogenic climate change will promote more intense, longer-lasting and larger fires.

2021

Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand
New Zealand was among the last habitable places on earth to be colonized by humans1. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Māori settlement2, but the precise timing and magnitude of associated biomass-burning emissions are unknown1,3, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica4. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling5 demonstrates that the observed deposition could result only from increased emissions poleward of 40° S—implicating fires in Tasmania, New Zealand and Patagonia—but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Māori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y−1 during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia6,7, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere.

© Chen Yang 1996 - 2025